

Lead & Copper Rule (LCR) Lead and Copper Rule (LCR)2, 56 FR 26460 - 26564, June 7, 1991 "To protect public health by minimizing lead (Pb) and copper (Cu) levels in drinking water, primarily by reducing water corrosivity" Action Level: 15 ppb Lead 1.3 ppm Copper Maximum Contaminant Level Goal: 0 ppb Lead <1.3 ppm Copper

Should we address causes or symptoms?

Regulatory Environment	
What is NCC/ANCLC12	
What is NSF/ANSI 61? NSF/ANSI 61 is a performance—based standard established to measure	
contaminates introduced into drinking water from products. The contaminants include regulated metals including lead and copper, organics and pesticides.	_
For more information on NSF 61 see: www.nsf.org/business/water_distribution/faq.asp#general	
What is NSF/ANSI 61 Annex F?	
NSF/ANSI 61 Annex F requirement reduces the allowable limit for lead extracted from test bodies from 15 ppb to 5 ppb (parts per billion).	
The Annex F requirement has an effective date of July 1, 2012.	
What are NSF 61 Annex G and NSF 372?	
NSF/ANSI 61 Annex G and NSF/ANSI 372 are lead content standards that can be used to verify the lead content of any product, material and	
component that conveys or dispenses water for human consumption. Certified to NSF/ANSI 372	
WQA Aquatech USA 2013 - Indianapolis, Indiana	
POE Corrosion Prevention Strategies	
• TDS –100 – 500 TDS Range	
• pH range 7.0 – 10.0	-
Raise total alkalinity	
Flow - Design to minimize turbulence	
Dissimilar Metals – Separation & Isolation	
External factors – Ground paths, peripheral metallic contact	
Dissolved/Entrained Gases	
Biofilm- Maintain a sanitary system, regularly disinfect POE	
equipment	-
WQA Aquatech USA 2913 - Indianapolis, Indiana	
Corrosion Remediation Strategies	
₩.	
Identify Causal Factors	
Remove Causal Factors	
Nemove Causai Factors	
Identify Damaged Areas	

Replace Damaged Areas

• Chemicals & Coatings

POU Treatment Technologies		
Lead	Copper	
Ion Exchange	Ion Exchange	
Reverse Osmosis	Reverse Osmosis	
Distillation	Distillation	
Deionization -EDI/CDI	Deionization -EDI/CDI	
Carbon Block		
Poly/Orthophosphates	Poly/Orthophosphates	
WQA Aquatech USA 2013 • Indianapolis, Indiana		

Compounding Chemistry Water that otherwise meets standards can become more corrosive after softening Water Softeners/Conditioners Resin fouling & subsequent metal/mineral dumping Regeneration malfunctions Bacterial colonization Media Filtration Systems Bacterial Colonization during regular service Media Replacement frequency and sanitization Chemical interactions General Legal Issues Installation methods and materials Follow-up testing

Closing Thoughts	AOUNTER SA	
	Cities can't realistically protect everyone, all the time	
	Consumers don't trust their drinking water to be 100% safe	
MARCH	Most consumers don't like the taste of city water	
	Even when water meets "minimum standards", most consumers/users believe that it isn't good enough	
	All drinking or process water should be filtered	